
An Experimental Study of Parameter Selection
in Particle Swarm Optimization Using an

Automated Methodology

Maŕıa Cośıo-León1, Anabel Mart́ınez-Vargas2, and Everardo Gutierrez3

1 Universidad Autónoma de Baja California, FIAD, Ensenada, BC, Mexico
2 Centro de Investigación y Desarrollo de Tecnoloǵıa Digital del Instituto Politécnico

Nacional (CITEDI-IPN), Tijuana, BC, Mexico
3 Universidad Autónoma de Baja California, FC, Ensenada, BC, Mexico

cosio.maria@uabc.edu.mx, amartinez@citedi.mx,

everardo.gutierrez@uabc.edu.mx

Abstract. In this work, an experimental study to evaluate the parame-
ter vector utility brought by an automated tuning tool, so called Hybrid
Automatized Tuning procedure (HATp) is given. The experimental work
uses the inertia weight and number of iterations from the algorithm PSO;
it compares those parameters from tuning by analogy and empirical
studies. The task of PSO is to select users to exploit concurrently a
channel as long as they achieve the Signal-to-Interference-Ratio (SINR)
constraints to maximize throughput; however, as the number of users
increases the interference also arises; making more challenging for PSO
to converge or to find a solution. Results show that, HATp is not only
able to provide a parameter vector that improve the search ability of
PSO to find a solution but also to enhance its performance on resolving
the spectrum sharing application problem than those parameters values
suggested by empirical and analogical methodologies in the literature on
some problem instances.

Keywords: Parameter tuning, metaheuristic, particle swarm optimiza-
tion.

1 Introduction

Meta-heuristic algorithms are black box procedures that, provided a set of can-
didate solutions, solve a problem or a set of problems instances. However, they
require to select a set of parameters to tuning them, which greatly affect the
meta-heuristic’s efficiency to solve a given decision problem. Those parameters
are classified as qualitative and quantitative; the former are related to proce-
dures (e.g Binary or Continuous PSO), while the latter are associated with
specific values (e.g. number of iterations, and population size). This work is
focused on quantitative parameters to configure the PSO algorithm; which is a
non-trivial problem as authors in [1] explain. This problem in the literature is
called algorithm configuration by authors in [2]; and parameter tuning in [1], [3].

9 Research in Computing Science 82 (2014)pp. 9–20



In [1] authors define the parameter tuning procedure as the task in which
parameter values are set before executing a given meta-heuristic; and those val-
ues remain fixed while the meta-heuristic is running. Due to the aforementioned,
parameter’s tuning is an important task in the context of developing, evaluating
and applying meta-heuristic algorithms.

1.1 Particle Swarm Optimization Algorithm

To evaluate parameter vector utility bring by the tuning procedure, this paper
uses the Particle Swarm Optimization (PSO) algorithm [4], which is categorized
by its authors as an evolutionary computation technique since it utilizes a
population of candidate solutions to evolve an optimal or near-optimal solution
for a problem.

The individuals in the PSO technique are called particles and they represent
a possible solution of the optimization problem. When elements of a problem
are represented as binary variables, the binary version of PSO (BPSO) is used
[7]. Since its inception, many adjustments have been made to improve its perfor-
mance. One of these new improvements to BPSO algorithms is Socio-Cognitive
Particle Swarm Optimization (SCPSO) [8]. SCPSO introduces the distance be-
tween gbest and pbest values as a new velocity update equation which maintain
diversity in the swarm, a socio-cognitive scaling parameter c3 and a new position
update equation. The latter used on spectrum sharing application to maximize
throughput in the network.

This feature article is about analyzing two procedures for optimization pa-
rameters on SCPSO algorithm: a) model-base CALIBRA algorithm [9], and b)
polynomial interpolation technique called Newton’s Divided Difference Polyno-
mial Method of Interpolation [10]. Along with aforementioned procedures, we
use as a control group, parameter vector values taken from the state of art,
tuning by analogy (TA) and empirical methodology to test the parameter vector
utility.

2 Automatic Parameter Tuning

The automated tuning procedures address the parameter tuning problem; they
are designed to search for the best parameter vector. Therefore, given a meta-
heuristic with n parameters, tuning procedures search for the best parameter
vector P ∗ = {p0, p1, . . . , pn}. The parameter vector P ∗ usually is selected by re-
searchers using manual tuning procedures [11] or tuned by analogy’s procedures
[12]. The No Free Lunch theorem of optimization states that; one P ∗ allowing
to solve all optimization problems is verifiable non-existent; therefore, tuning by
analogy procedure, which uses a single parameter vector for different problems or
different problem instances, is not the best strategy. On the other hand, manual
tuning procedures are very time consuming, and failure prone; therefore, it is
necessary to conduct other procedures to avoid those drawbacks.

10

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)



In [13] the author gives a brief review about the automated parameter tuning
procedures; using a two fold model classification: a) model-free, and b) model-
based approaches. The former models are procedures guided by randomness, or
simple experimental design (e.g. Latin Hypercube Sampling), tuners with very
limited extrapolation potential. On the other hand, the latter models have the
capabilities of 1) interpolating for the choice of new parameter settings; and even
2) extrapolating parameter vectors for new problems or problem instances. In
this context, interesting contributions to find P ∗ through automated procedures
are presented in [1], [3].

In the next section, we will describe CALIBRA, and Newton’s Divided Differ-
ence Polynomial Method of Interpolation which is the the interpolation technique
selected to find new P ∗ for problem instances.

2.1 The Hybrid Automatized Tuning Procedure (HATp)

Traditional tuning methods comprises three layers: a) design layer; b) algorithm
layer; and c) application layer [1]. In this experimental study, we propose to use
in the design layer an Hybrid Automatized Tuning procedure (HATp). Firstly,
it exploits a procedure that couples fractional factorial experimental design and
a local search procedure, called CALIBRA [9]. Then, an interpolation method
such as Newton’s divided difference polynomial works with CALIBRA to bring
a particular P ∗ for problem instances; while reducing computer time.

HATp’s first stage uses CALIBRA (HATpI); it sets up a series of experiments
to find the best value for quantitative parameters in the tuning target algorithm.
The notion of best depends on how the performance of the target algorithm
is measured. To achieve this, CALIBRA combines two methods: experimental
designs and local search. The experimental designs focus on the on promising
regions [9]. Promising regions are selected using a full factorial design 2k, and
Taguchi’s L9(34); once a region is selected, CALIBRA makes a local search. The
above procedure is executed until certain stopping condition is met. CALIBRA
uses P to configure the interest algorithm; same process is executed several
times with P obtained from promising regions by CALIBRA up to find P ∗.
It is important to denote that the CALIBRA software can provided up to five
parameter calibration; so for metaheuristics with more than five parameters, it
is necessary to develop a new CALIBRA software version.

Considering the No Free Lunch theorem of optimization; and a continuous
local function f(x); once CALIBRA brought a set of parameter vectors P ∗,
HATp uses a polynomial interpolation method to find new problem instances P ∗

(HATpII). The interpolation process takes advantage of CALIBRA model-base
characteristic; building a polynomial of order n that passes through the 1 + n
points calculated by CALIBRA. To find the new points, the interpolation process
uses Newton’s divided differences recursive equations (1), (2), (3):

f [xi] = yi = f(xi) (1)

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
(2)

11

An Experimental Study of Parameter Selection in Particle Swarm Optimization ...

Research in Computing Science 82 (2014)



f [xi+1, xi+2, . . . , xi+n] =
f [xi+1, xi+2, . . . , xi+n]− f [xi, xi+1, xi+2, . . . , xi+n−1]

xi+n − xi
(3)

Formalizing the automated parameter tuning procedure HATp: suppose that
the performance of algorithm Ac is to be studied for a given set of problem
instances I; P ∗ is found using a model based algorithm Ca; using a set of
problems instances I ′ different to I. Once Ca brings the P ∗, the algorithm Ac
is configured with it, and a problem instance from I is resolved. Performance
measures are selected according to problem instances open questions.

The second strategy in HATp is an interpolation procedure, Dd to find P ∗ for
new problem instances as follows: given a continuous function f and a sequence
of known points x0;x1; . . . ;xn. the divided difference of f over x0;x1; . . . ;xn
points is the value of an = f [x0;x1; . . . ;xn]; which is recursively computed by
equations (1), (2), (3), in intention to find P ∗, and reduce tuning computer time.

3 Target Problem and Experimental PSO Setup

In cognitive wireless networks with spectrum underlay when a secondary trans-
mitter requests for a primary channel, they must be able to check if mutual in-
terference among secondary users (unlicensed users) and primary users (licensed
users) doesn’t rise to the level of harmful interference. In this case the primary
users have priority over a specific channel, and secondary users are allowed to
transmit in the same channel as long as they do not cause harmful interference
to the primary user.

Consider Figure 1, there is a number of secondary links Sl and primary links
Pl are deployed in a coverage area A. A link either secondary or primary is
represented by the union of a transmitter and a receiver and it is identified by a
number beside the link. The number of primary links Pl is the primary network,
which is assigned with a portion of regulated spectrum. Whereas, the secondary
network is composed by the number of secondary links Sl, which have to find
a primary channel to exploit it. The cognitive network has a central entity; it
knows the number of primary channels that can be assigned to secondary links.
The primary channel allocation for secondary links doesn’t depend on whether
primary channels are idle or busy but once they are assigned the interference does
not cause disruption in both primary and secondary networks. A primary link has
a primary channel to share (the numbers in braces in Figure 1) and one primary
channel can be assigned to several secondary links (the number in brackets in
Figure 1), as long as they, together, do not generate enough interference to
disrupt the primary communication link. The secondary link selection depends
on how much interference it can generate to those primary and secondary links
that use the same primary channel. To determine the level of interference that
any of the links experiences in the cognitive network, the equations (4) and (5)
calculate the signal-to-interference-noise-ratio (SINR) value that the receiver
either secondary or primary can suffer. The SINR at the secondary receiver u is

12

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)



Fig. 1. System scenario.

given by:

SINRu =
Pu/lds(u)n∑

k∈Φ Pk/dss(k, u)n + Pv/dps(v, u)n
, 1 ≤ u ≤ Sl (4)

where Pu is the transmit power of secondary transmitter u, Pk is the transmit
power of secondary transmitter k, Pv is the transmit power of primary transmit-
ter v, lds(u) is the link distance of secondary link u, dss(k, u) is the distance from
secondary transmitter k to secondary receiver u, dps(v, u) is the distance from
primary transmitter v to secondary receiver u, k is the index of active secondary
transmitters, Φ is the set of active secondary transmitters, n is the path loss
exponent (a value between 2 and 4). Similarly, the SINR at the primary receiver
v is given by:

SINRv =
Pv/lpd(v)n∑

k∈Φ Pk/dps(k, v)n
, 1 ≤ v ≤ Pl (5)

where Pv is the transmit power of primary transmitter v, Pk is the transmit
power of secondary transmitter k, ldp(v) is the link distance of primary link v,
dps(k, v) is the distance from secondary transmitter k to primary receiver v.

Data rate contributions of the secondary links and primary links are calcu-
lated according to equations (6) and (7) respectively. The data rate depends on
primary channel bandwidth B that secondary links and primary links can share
and the conditions of the propagation environment (attenuation and interfer-
ence).

c′u = Blog2(1 + SINRu) (6)

c′′v = Blog2(1 + SINRv) (7)

13

An Experimental Study of Parameter Selection in Particle Swarm Optimization ...

Research in Computing Science 82 (2014)



Based on the above discussion, the admission and interference control prob-
lem is formulated as the following optimization problem:

Max

Sl∑
u=1

c′uxu +

Pl∑
v=1

c′′v (8)

s.t.

SINRu ≥ α (9)

SINRv ≥ β (10)

c′u > 0, u = 1, 2, . . . , Sl (11)

c′′v > 0, u = 1, 2, . . . , P l (12)

c′u, c
′′
v ∈ R+ (13)

xu =

{
1, if SINRu ≥ α and SINRv ≥ β
0, otherwise

(14)

By observing the above optimization problem, the objective function is to
maximize the sum throughput in the cognitive network (8), subject to the SINR
requirements of the secondary links (9) and primary links (10). The maximum
interference level is limited by α in the secondary network and β in the primary
network in the right-hand side of each of the constraints (9) and (10). Constraints
from (11) to (13) are integrity restrictions. xu = 1 if secondary link u is included
in the solution and xu = 0 if it remains out as indicated in (14).

3.1 Solution Procedure Based on SCPSO Algorithm

The goal by using SCPSO is to decide which secondary links can achieve this,
finding a binary vector Pg of size Sl representing the solution, where the bits
1/0 symbolize if the u− th secondary link is selected as part of the solution (bit
1) or not (bit 0). The maximum data rate achieved in the system is f(Pg).

Assume S as the number of particles and D as the dimension of particles.
A candidate solution is expressed as Xi = [xi1, xi2, . . . , xiD] where xid ∈ {0, 1}.
Velocity is Vi = [vi1, vi2, . . . , viD] where vid ∈ [−Vmax, Vmax]. The personal best
evaluation (pbest) of the i-th particle is denoted as Pi = [pi1, pi2, ..., piD] where
pid ∈ {0, 1}. g is the index of the best particle in the swarm, therefore Pg is the
best evaluation in the swarm (gbest). The swarm is manipulated according to
the following velocity vid and position xid equations:

vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid) (15)

vid = w1vid + c3(gbest− pbest) (16)

xid = xid + vid (17)

xid = xidmod(2) (18)

where w and w1 are considered the inertia weights, c1 and c2 are the learning
factors, c3 is called as socio-cognitive scaling parameter, and finally r1 and r2

14

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)



are uniformly distributed random numbers in [0,1]. Algorithm 1 is a simplified
version from work presented in [14] to address the spectrum underlay problem
in cognitive networks.

Algorithm 1: SCPSO solution to solve the spectrum underlay problem.

Data: Sl, Pl, α, β, S, and Vmax
Result: Pg, f(Pg)

1 initialization;
2 repeat
3 for i= 1 to number of particles do
4 Update pbest
5 Update gbest
6 Update xid and vid using equations (15) to (18)
7 if xid = 1 then
8 allocate randomly a new channel to x′id from the set PC

9 until stopping criterion met ;

Initialization stage includes: 1) locate randomly Sl and Pl in the scenario,
2) initialize randomly Xi, 3) initialize randomly Vi, 4) Set Pi = Xi, 5) Set
P ′i = X ′i, and 6) initialize randomly vector Spectrum Status with values from
Pl. Note that in initialization stage, Pi and Xi are considered to coincide. Three
new vectors X ′i, P

′
i , and Spectrum Status are included additionally. X ′i provides

the possible channel allocation for secondary links. P ′i stores the best channels
allocations found so far for a particle and Spectrum Status vector stores the
channel allocations for primary links.

In update pbest (step 4 in Algorithm 1), the particle compares f(Xi) > f(Pi)
and overwrites pbest if f(Xi) is higher than f(Pi). In contrast, in update gbest,
all pbest values will be compared with gbest value, so if there is a pbest which
is higher than the gbest, then gbest will be overwritten. Update pbest and gbest
phases require fitness calculation according to (8); to avoid infeasible solutions in
the swarm, they are penalized by setting total particle’s fitness to zero therefore
they are not chosen in the selection process. Further details and the complete
implementation of this solution procedure based on the SCPSO algorithm are
provided in [14].

3.2 Quantitative Parameters: Number of Iterations and Inertia
Weight

The SCPSO parameters of interest in this paper are the number of iterations
and inertia weight. The inertia weight w influences the trade-off between
exploration and exploitation [15]; therefore, a large w facilitates exploration,
while a smaller w tends to facilitate exploitation in promising regions. Finding
a suitable w helps to require fewer number of iterations on average to find the
optimum value [15]. We took the reference values suggested by analogy from [8],
except for the number of iterations and swarm size which are derived from an

15

An Experimental Study of Parameter Selection in Particle Swarm Optimization ...

Research in Computing Science 82 (2014)



empirical tuning methodology (see Table 1); those values and HATp P ∗ were
tested in the SCPSO algorithm to know their utility; it is important to denote
that both parameter vectors had same values for parameters indicated (*) in
Table 1.

Table 1. Parameter values.

Parameter Value

Number of Secondary Users(*) 15,20,25 and 30
Number of Primary Users(*) 1
Number of Particles(*) 40
Number of iterations 150
Maximum velocity(*) 6
Minimal Velocity(*) -6
Inertia Weight 0.721000

Taking as pivotal values, the Number of iterations and Inertia weight showed
in Table 1; we define a 200 hundred percent rule to state thresholds around them.
It is a precondition in CALIBRA to define a searching area for promise regions.

Using aforementioned thresholds, CALIBRA defines a set of P vectors which
are used to configure the set I ′ of problem instances; finally after testing P vec-
tors on each problem instance in I ′; CALIBRA brought a P ∗. The combination
of α, β and the Number of secondary users is used by CALIBRA to find P ∗.
Note that α and β are considered to coincide. Tables 2 and 3 show the entire
design points used to configure SCPSO algorithm to resolve the set of problem
instances I.

Table 2. Number of iteration values brought by CALIBRA.

Number of
Iterations

Number of Secondary Users
15 20 25 30

α, β
(dB)

4 48 198 168 162
6 228 102 128 142
8 96 93 145 227
10 122 222 221 246
12 31 201 199 14
14 145 197 258 82

The range of w values brough by CALIBRA contained values gave in [8]
w = 0.721000, and [15] w = 0.8 as show in Table 3. On the other hand, the
number of iterations have differences, in [15] authors proposed up to 2500 itera-
tions, the empirical tuning result was 150, and the values brough by CALIBRA
between 40 and 250 for the number of iterations (see Table 2).

16

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)



Table 3. Inertia weight values brought by CALIBRA.

Inertia weight
Number of Secondary Users

15 20 25 30

α, β
(dB)

4 0.72309 0.81257 0.79076 0.78843
6 0.62500 0.82340 0.88750 0.70429
8 0.86409 0.76332 0.95552 0.93976
10 0.85324 0.88784 0.89460 0.80000
12 0.71726 0.80693 0.80002 0.11093
14 0.88921 0.77942 0.94360 0.45000

4 Results

The aim of this experimental study is to know how much the SCPSO algorithm
performance is affected by P ∗ brought by TA-empirical tuning and HATp pro-
cesses. Tables 4 and 5 show SCPSO algorithm results using 30 different design
points defined by parameter values in Tables 2 and 3; those design points were
tested 1000 times; The characteristics of the computer equipment and software
used were: a)Fine Tuner Tool, Calibra; Language, Borland C++, version 5.02;
Operating system, Windows 7 enterprise 32 bits; Processor, Intel(R) Core (TM)
i5-2320 CPU@3.00 GHz, and the RAM memory, 4.00 GB.

Analysing the SCPSO mean throughput in Table 5; it was higher when the
SCPSO algorithm used the TA-empirical tuning vector than HATpI ; however,
as the number of secondary users, α, β values increase, also increases the average
throughput of the SCPSO using the HATpI P ∗, up to 100%. Concluding, the
TA-empirical P ∗ utility is better with low problem complexity, while HATpI P ∗

is better in scenarios with high problem complexity. In line 48 of Table 5 HATpI
P ∗ had its worse performance, when the number of secondary users is eqauls
to 30 and α, β= 14 dB, the highest problem instance complexity; due to fact
that CALIBRA did not provide a P ∗. About the maximum value for data rate,
as problem complexity increase the utility of HATpI P ∗ as well. However the
median parameter shows zero in both process.

The SCPSO algorithm performance in Table 4 is similar to the one shown in
Table 5. Although, considering the average throughput, only in three cases the
TA vector allowed SCPSO algorithm to bring better results.

A global view of results in Tables 4 and 5, show that as the problem complex-
ity increases, the SCPSO algorithm performance degrades. This behaviour allow
us to conclude that, taking higher thresholds for w and Number of iterations
could be possible to find better P ∗ vectors. This conclusion is supported by [8]
and [15] as well as CALIBRA exploration in similar areas, having SCPSO low
performance on average fitness for entire problem instances.

5 Conclusions

In this paper, we analyse two parameter tuning procedures, specifically focusing
on two quantitative parameters of SCPSO which resolves the spectrum sharing

17

An Experimental Study of Parameter Selection in Particle Swarm Optimization ...

Research in Computing Science 82 (2014)



Table 4. Tuning by analogy versus Interpolation P ∗
i SCPSO results.

Design Point Mean Standard
Deviation

Q1 Median Q3 Maximum

1 4-17 696.8936 216.1854 561.3409 685.2271 825.2401 1579.2489
2 4-17-HATpII 705.1499 190.4909 580.8800 697.3810 820.5509 1336.9885
3 6-17 617.4922 216.0871 507.0424 624.5074 755.0196 1360.8872
4 6-17-HATpII 622.5656 223.6225 494.9839 626.1765 761.4327 1330.2744
5 8-17 536.3193 259.6028 409.4786 551.6591 700.4633 1298.0047
6 8-17-HATpII 559.0188 229.8708 429.6519 568.1481 700.5008 1452.1818
7 10-17 395.5316 266.3749 200.4630 441.9605 580.0636 1288.5817
8 10-17-HATpII 530.5890 188.5329 412.0709 525.8743 651.5861 1333.6288
9 12-17 243.9879 255.2588 0 244.8208 450.1429 950.3957
10 12-17-HATpII 168.5188 209.0008 0 0 330.8397 774.7756
11 14-17 135.0718 199.5533 0 0 288.34135 863.5317
12 14-17-HATpII 168.5188 209.0008 0 0 330.83975 774.7756

13 4-22 577.0828 314.40666 438.41045 625.3864 784.41305 1502.3393
14 4-22-HATpII 665.16352 238.7602 538.10245 666.6439 807.373 1390.4193
15 6-22 424.30708 340.36649 0 508.0161 683.1996 1557.0939
16 6-22-HATpII 579.12143 267.8317 452.0497 594.8837 743.12315 1527.0990
17 8-22 253.58628 319.7857 0 0 542.4337 1368.1840
18 8-22-HATpII 428.06549 308.7124 0 497.0066 651.2654 1354.8228
19 10-22 121.20538 235.4958 0 0 0 1107.1568
20 10-22-HATpII 404.11412 275.4165 191.6255 445.3831 598.9975 1116.7342
21 12-22 43.86616 140.1225 0 0 0 717.4726
22 12-22-HATpII 197.78717 258.8344 0 0 413.1131 1072.9170
23 14-22 17.44797 84.5748 0 0 0 806.7283
24 14-22-HATpII 98.76469 189.0751 0 0 0 792.4581

25 4-27 257.6821 354.0673 0 0 604.3964 1226.8559
26 4-27-HATpII 454.0794 375.7800 0 543.2218 751.57415 1407.41
27 6-27 124.4342 276.2780 0 0 0 1327.9231
28 6-27-HATpII 359.5787 358.58486 0 406.1548 656.4678 1521.9564
29 8-27 62.9879 201.1050 0 0 0 1236.3037
30 8-27-HATpII 233.1508 280.9179 0 0 484.8050 1035.4888
31 10-27 17.1658 97.0037 0 0 0 849.8469
32 10-27-HATpII 111.6993 232.5512 0 0 0 953.7544
33 12-27 6.0098 50.0705 0 0 0 641.0816
34 12-27-HATpII 2.70154 41.9489 0 0 0 835.5134
35 14-27 1.49241 27.7714 0 0 0 605.9482
36 14-27-HATpII 12.7723 74.91958 0 0 0 688.865

problem. A number of experiments are performed with different design points.
Simulation results show that when Inertia weight is lower than 0.5 and the
number of iterations=14 the SCPSO performance is low, therefore we conclude
that an inertia weight = 0.8 is a good low threshold for this parameter. Conse-
quently the high threshold should be modified up to find a suitable value to cope
with more complex problem instances. Works [8] and [15] support the above
observation, since authors show their exploration process to derive parameter
values; however, they are not good for the present problem as its complexity
increases.

On the other hand, HATp can provide better parameter values that improves
the search ability of SCPSO to find a solution, enhancing its performance on

18

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)



Table 5. Tuning by analogy versus CALIBRA P ∗
i SCPSO results.

Design Point Mean Standard
Deviation

Q1 Median Q3 Maximum

1 4-15 682.9017 181.5390 556.0250 673.705 794.495 1318.43
2 4-15-HATpI 659.3607 187.8980 527.1200 648.67 781.575 1303.3
3 6-15 635.4864 191.7692 504.0000 628.34 759.725 1364.72
4 6-15-HATpI 606.9634 221.6317 482.3050 621.485 745.45 1217.35
5 8-15 587.4071 214.8417 458.8550 590.33 707.28 1492.48
6 8-15-HATpI 145.8720 273.8555 0 0 0 1211.07
7 10-15 492.0968 223.2007 365.1100 501.86 627.47 1154.4
8 10-15-HATpI 532.4548 175.3387 413.64 522.845 629.95 1157.38
9 12-15 351.1337 227.8941 222.205 388.205 511.765 1124.26
10 12-15-HATpI 320.7400 231.2092 0 356.935 477.86 1016.81
11 14-15 220.2125 211.9554 0 251.25 376.045 1006.27
12 14-15-HATpI 367.0684 159.9957 271.54 348.345 455.86 938.5

13 4-20 654.1262 258.6153 518.245 667.765 823.59 1318.28
14 4-20-HATpI 704.7995 214.5675 571.155 698.325 847.28 1489.07
15 6-20 514.2564 315.9078 351.965 571.44 731.145 1388.26
16 6-20-HATpI 620.3161 229.7880 496.035 626.455 753.34 1471.96
17 8-20 364.8977 319.4826 0 427 621.625 1349.14
18 8-20-HATpI 467.7069 294.4225 331.835 517.33 673.465 1319.95
19 10-20 216.8342 285.9504 0 0 471.45 1248.8
20 10-20-HATpI 462.6305 225.4804 356.25 485.155 604.185 1056.78
21 12-20 107.2892 210.5406 0 0 0 1058.84
22 12-20-HATpI 259.1259 264.9015 0 276.805 477.35 1088.38
23 14-20 40.8101 128.3257 0 0 0 868.99
24 14-20-HATpI 89.0967 173.724 0 0 0 986.5

25 4-25 373.3844 367.6206 0 431.3250 674.8550 1520.4800
26 4-25-HATpI 556.9658 317.0070 446.455 600.855 764.27 1378.4100
27 6-25 217.1393 322.6422 0 0 514.75 1307.2000
28 6-25-HATpI 459.6812 326.6541 0 532.61 698.265 1611.7400
29 8-25 97.4385 234.07921 0 0 0 1163.8100
30 8-25-HATpI 386.4427 300.07269 0 452.31 617.46 1214.9300
31 10-25 44.0648 157.0061 0 0 0 967.7300
32 10-25-HATpI 204.6662 285.2063 0 0 460.0800 1232.2100
33 12-25 12.6148 79.9636 0 0 0 814.1200
34 12-25-HATpI 43.7149 145.9721 0 0 0 990.7600
35 14-25 40.8101 128.3257 0 0 0 868.9900
36 14-25-HATpI 60.1733 158.4422 0 0 0 1075.4600

37 4-30 126.9177 282.2731 0 0 0 1264.15
38 4-30-HATpI 265.2456 360.2032 0 0 608.92 1453.76
39 6-30 55.7050 194.6109 0 0 0 1326
40 6-30-HATpI 41.4461 170.6329 0 0 0 1110.18
41 8-30 20.3758 115.4815 0 0 0 920.09
42 8-30-HATpI 145.8720 273.8555 0 0 0 1211.07
43 10-30 6.0608 59.3307 0 0 0 793.88
44 10-30-HATpI 14.0721 96.6330 0 0 0 1053.18
45 12-30 1.2604 23.8519 0 0 0 568.03
46 12-30-HATpI 2.8047 32.7819 0 0 0 618.89
47 14-30 0.4429 9.9828 0 0 0 250.14
48 14-30-HATpI 0 0 0 0 0 0

resolving the spectrum sharing problem, than those parameters values suggested

19

An Experimental Study of Parameter Selection in Particle Swarm Optimization ...

Research in Computing Science 82 (2014)



by TA and empirical methodology on some problem instances. This encourage
us to analyse other regions using HATp; in intention to find better P ∗. Our
interest is also to analyse another automated tuning procedures as ParamILS
to gather information about how parameter values affect the SCPSO algorithm
performance.

References

1. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm and Evolutionary Computation 1 (2011) 19 – 31

2. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investi-
gation of model-based parameter optimisation: Spo and beyond. In: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO
’09, New York, NY, USA, ACM (2009) 271–278

3. Montero, E., Riff, M.C., Neveu, B.: A beginner’s guide to tuning methods. Applied
Soft Computing 17 (2014) 39 – 51

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995.
Proceedings., IEEE International Conference on. Volume 4. (1995) 1942–1948 vol.4

5. Parsopoulos, K., Vrahatis, M.: Particle Swarm Optimization and Intelligence: Ad-
vances and Applications. Premier reference source. Information Science Reference
(2010)

6. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (2001)

7. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm
algorithm. In: Systems, Man, and Cybernetics, 1997. Computational Cybernetics
and Simulation., 1997 IEEE International Conference on. Volume 5., IEEE (1997)
4104–4108

8. Deep, K., Bansal, J.C.: A socio-cognitive particle swarm optimization for multi-
dimensional knapsack problem. In: Proceedings of the 2008 First International
Conference on Emerging Trends in Engineering and Technology. ICETET ’08,
Washington, DC, USA, IEEE Computer Society (2008) 355–360

9. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Oper. Res. 54 (2006) 99–114

10. Autar Kaw, E.E.K.: NUMERICAL METHODS WITH APPLICATIONS:
Abridged. autarkaw.com (Licencia estndar de derechos de autor) (2011)

11. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design
to find effective parameter settings for heuristics. Journal of Heuristics 7 (2001)
77–97

12. Bartz-Beielstein, T.: How experimental algorithmics can benefit from mayo’s
extensions to neyman-pearson theory of testing. Synthese 163 (2008) 385–396

13. Dobslaw, F.: Recent development in automatic parameter tuning for metaheuris-
tics. In: Proceedings of the 19th Annual Conference of Doctoral Students - WDS
2010. (2010)

14. Mart́ıNez-Vargas, A., Andrade, A.G.: Comparing particle swarm optimization
variants for a cognitive radio network. Appl. Soft Comput. 13 (2013) 1222–1234

15. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Proceedings of the 7th International Conference on Evolutionary Programming
VII. EP ’98, London, UK, UK, Springer-Verlag (1998) 591–600

20

María Cosío-León, Anabel Martínez-Vargas, and Everardo Gutierrez

Research in Computing Science 82 (2014)


